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ABSTRACT

We clearly elucidate the kinematic constraints, and the corresponding kinematic

indeterminacy of part of the deviatoric stress tensor, in a rigid-viscoplastic single crys-

tal lacking five independent slip systems. The indeterminate stress component is a

Lagrange multiplier enforcing the kinematic constraint, and it must be determined

from equilibrium considerations. A simple polycrystalline model is constructed which

precisely satisfies iocal kinematic constraints as well as global compatibility. Volume-

average global stresses are obtained by approximating the local constraint stress as

the corresponding projection of the (to-be-determined) global stress. Applications of

the model to hexagonal crystals without pyramidal slip, and to large deformation and

texturing of orthrhombic polycrystalline materials (olivine; HDPE) are made.

1. INTRODUCTION

PHYSICALLY-BASED continuum modeling of plastic deformation in iolycrystalline ag-

gregates is a broad and active field of research. The simplest eff( e models of this

sort are based on the suggestion of TAYLOR (1938) that local detormation within a

heterogeneous polycrystalline aggregate is often approximately homogeneous when a

representative material element is subject to loading consistent with macroscopically

uniform deformation. This assumption assures both local and global compatibility but

in general violates local traction equilibrium across grain boundaries. In many cases,

however, major features of both the macroscopic coi: ititutive behavior of the aggregate

and the ev, ition of crystallographic texture with on-going deformation can be accu-

rately ;;ut et by TAYLOR-type models. When applied to crystalline deformation
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by slip, various adaptations of the TAYLOR model have provided assessments of effects

of differing deformation resistances for different classes of slip systems (HUTCHINSON,

1976; 1977), of self and latent hardening of slip systems (ASARO and NEEDLEMAN,

1985), of strain rate sensitivity of slip (HUTCHINSON, 1976; 1977), and of finite defor-

mation elastic/viscoplastic flow (ASARO and NEEDLEMAN, 1985). Among the effects

which cannot be directly addressed by such models are the influences of morphological

texture, including grain shape and orientation.

The greatest successes of TAYLOR models have occurred in cubic metal crystals,

where the large number of equivalent slip systems which (apart from modest differences

due to differential strain hardening) possess equivalent deformation resistances. The

flow envelope of a crystal can be defined as the locus of (deviatoric) stress components

required to generate resolved shear stresses equal to the deformation resistances on a

sufficient set of slip systems so as to accommodate arbitrary deformation rates. For high

symmetry cubic metal crystals, the flow envelope is roughly isotropic. In crystals of

lower symmetry, where the deformation resistances of different classes of slip systems

can vary markedly, the stress required to activate slip systems accommodating an

arbitrary deformation rate can become exceedingly high for certain orientations, and

the flow envelope can become highly distorted. For this reason, the corresponding

polycrystalline aggregate stress levels obtained from TAYLOR type models also become

large. In the limiting case of unbounded deformation resistance on all but four or fewer

linearly independent slip systems, the TAYLOR estimate of aggregate stress generally

becomes unbounded.

HUTCHINSON (1977) noted that the self-consistent method of HILL (1965), as im-

plemented by HUTCHINSON (1970; 1976) could provide reasonable estimates of macro-
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scopic flow strength for aggregates of crystals possessing slip systems of widely differing

deformation resistance, including the limiting case of less than five linearly independent

slip systems. The main reason that the self--consistent model can deal with these cases

is that it imposes much less stringent kinematical conditions on the deformation of

individual crystals than does the TAYLOR model, with favorably oriented crystals dis-

playing higher deformation than average and unfavorably oriented crystals displaying

less deformation than average. HUTCHINSON (1977) applied the self-consistent method

to isotropic distributions of hexagonal crystals. Recently TAKESHITA, et at., (1989), us-

ing the self-consistent viscoplastic approach of MOLINARI, et at., (1987), modeled the

development of crystallographic texture in olivine, an orthorhombic mineral possessing

only three independent slip systems.

While many crystalline materials display less than five independent deformation

mechanisms (see, for example, GROVES and KELLEY, 1963), our interests in kinemati-

cally deficient crystals are motivated by semi-crystalline polymers such as high density

polyethylene (HDPE), Nylon-6, and polyethylene teraphthalate (PET). The crystalline

domains of these materials, while belonging to different crystal classes (orthorhombic,

monoclinic, and triclinic, respectively), nonetheless share the feature that material el-

ements aligned with the lattice directions corresponding to the stiff covalent bonding

of the backbone polymer chain are plastically ineztensible. That is, all known mecha-

nisms of plastic deformation in these materials, including slip (and, where applicable,

twinning and martensitic transformation), leave material distances along the chain axis

invariant. Large plastic deformation of semi-crystalline polymers can impart significant

crystallographic texture to these materials. A common textural feature is that the crys-

tallographic chain axes preferentially align with the material axes of maximum stretch
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(BOWDEN and YOUNG, 1974; HAUDIN, 1982). As this process occurs, the macroscopic

stress required to sustain plastic flow can ultimately rise sharply as the locally available

sites for continued macroscopic extension are geometrically deactivated.

Our attempts to model large deformation in HDPE using the self-consistent formu-

lation of MOLINARI, et al., (1987) provided qualitatively correct deformation textures,

but unsatisfactory macroscopic stress-strain behavior; macroscopic average deviatoric

stress components showed extreme fluctuations, especially at sharper textures. Be-

cause of the local inextensibility constraint, the incompressible viscoplastic formula-

tion of MOLINARI, et al., (1987) cannot fully resolve the local deviatoric stress within

a crystallographic inclusion, and the erratic macroscopic stresses reflect this local inde-

terminacy. It seems that HUTCHINSON (1977) avoided this difficulty by using a slightly

different numerical formulation of the self-consistent model, including a slight elastic

compressibility.

Here we clearly identify the kinematically indeterminate component of stress de-

viator in a rigid-viscoplastic crystal possessing a kinematic rank deficiency (e.g., a

locally inextensible direction). This portion of local stress state must be determined

from equilibrium considerations, and procedures for so doing are similar to (but not

identical with) those for obtaining hydrostatic pressure in incompressible materials.The

focus of the paper is the development of a new hybrid formulation to estimate the local

deviatoric constraint stresses in terms of the (to-be-determined) macroscopic stress.

The complete system of equations, which we term the constrained hybrid (CH) model,

possesses a simple mathematical structure. The model is closely akin to the simple

TAYLOR model for crystals of full kinematic rank so that, for example, rate problems

of imposed macroscopic deformation can be solved without global iterations, in con-
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trast to more elaborate self-consistent models. Large deformation texture predictions

and macroscopic stress-strain behavior are readily obtained.

We compare the model with calculations of HUTCHINSON (1977) for isotropic tex-

tures of hexagonai crystals possessing only four independent systems. We generalize the

CH model to cases of three or fewer slip systems (two or more deviatoric constraints)

and compare results of the model with the texture predictions of TAKESHITA, et al.,

(1989) in olivine. Finally, we apply the CH model in a highly idealized way to the

deformation of initially isotropic HDPE.

Notation is based on the following conventions. Scalars are in mathematical italics

(A, a, a), vectors are lower case bold-face (a), second order tensors are upper case

bold-face (A), and fourth order tensors are in upper case caligraphic type (A). Tensor

(dyadic) products are indicated by '' and tensor scalar products of appropriate order

are denoted by a raised dot. The superscripts "I","T"', and "-1" denote "deviatoric

part of", "transpose", and "inverse", respectively. When required, repeated cartesian

subscripts are summed from 1 to 3. For example, on orthonormal basis vectors ej

c = cie ac= aci
a = ajej

A = Aijej (9 ej Ac = Aijcj ei
B=Be 1 0e, AB = AjkBkj e, 9 e,
B = Be;e 1.A. B =trAB T = AjBi

.4 =BOC A [G] B (C.G)
B=D®E AB =(C-D)B®E.
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2. CONSTRAINED SINGLE CRYSTAL

Consider a crystal possessing N slip systems, of which the ath possesses slip plane

normal n' and slip direction s , with n' • s' = 0. Let the shear strain rate on system

a be '. In anticipation of large deformation we neglect elasticity and take D, the

traceless rate of deformation generated by these slips, to be given by
N

D =
a=1 2

N

a--- a(1)

where R* is the symmetric, traceless Schmid tensor associated with slip system a.

We further assume that the span of the N tensors R* has, insymmetric deviatoric

second order tensor space, T2, a kinematic deficiency of rank one; that is, a single

constraint (in addition to incompressibility) exists on D. As a physical example of

such a constraint, suppose that material fibers parallel to unit vector c are inextensible.

Such a constraint can arise in hexagonal crystals when pyramidal slip is absent and only

basal and prismatic slip are available; in this case the inextensible fiber coincides with

[0001] directions, HUTCHINSON (1977). The inextensibility constraint can be written

as

c Dc =0. (2)

In order for this to be so for arbitrary shears j', it is necessary that c .R'c = 0 for each

system. These constraints can also be phrased in terms of the tensor scalar product

of D (or R*) with the tensorial internal variable C = c ® c. The tensor C is not

irreducible, and we find it more convenient to retain the traceless symmetric second

order tensor C' = C - !I, where I is the second order identity tensor, as local internal
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variable. Because D and R* are traceless, the inextensibility constraint (2) can also

be expressed as

D.C' =0, (3)

implying

Ra.CI =0. (4)

In view of the constraints (4), we will denote the span of R* by T2'.Lc, a four dimensional

subspace of T' which is orthogonal to the one dimensional subspace spanned by C'.

We now specify viscoplastic constitutive equations for the shears, '. Following

many others (e.g., HUTCHINSON, 1976; PAN and RICE, 1983; ASARO and NEEDLE-

MAN, 1985), we assume that :I' depends on the resolved shear stress through a power

law relation of the form
Tel a n-1

_- _ (5)g== o 90I, s

where n is the rate exponent, g* is the slip system hardness (or shear strength), % is

a pre-multiplying strain rate, and r' (< g*), the resolved shear stress on system a, is

given by

Ta = T . Ra, (6)

where T is the Cauchy stress. Since R = is deviatoric, we can also express the resolved

shear stress as r* = S. R", where the stress deviator is S = T - ltr(T) I. Slip system

strength may evolve with deformation according to

= - I-PI, (7)

where haO is a matrix of hardening moduli.
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The stress deviator S can be uniquely decomposed as

S = S*+ScC'
=s+3 (S. C') C"

2()

where S* E T2_.c; that is, S*. C' = 0. Using (6) and (8), the resolved shear stress can

also be expressed as
3 C

T =S*.R* + 3 ( S . C ') C'.Ra
2

S*.R a ,  (10)

because of (4). When (10) is inserted into (5), and the expression for j" inserted into

(1), the deformation rate can be written as

D = S " G )I RR * [S

- M(S*)(Sol. (1

The deformation rate is independent of the part of the stress deviator lying outside

T2 ¢c. Many models of crystallographic slip neglect effects of hydrostatic stress on slip

rates. Thus the independence of the deformation rate from a part of the stress tensor

is not entirely without precedent. In the formulation of boundary value problems of

incompressible crystalline slip, the incompressibility condition I. D = 0 is viewed as a

constraint and the hydrostatic stress a = I. T/ (I. I) = I. T is a Lagrange multiplier

enforcing the constraint, the latter being determined from equilibrium considerations.

Analogously, in kinematically deficient crystals, D C' = 0 is a constraint, and the

enforcing Lagrange multplier Sc = C'. T/ (C' . C') = S must be determined from

equilibrium.
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Thus, there are two main features which distinguish the viscoplastic response of the

constrained crystal from that of "traditional" crystals. First, the deformation rate lies

in a four-dimensional subspace, T2±c, of deviatoric space, T2, rather than, in gene-al,

spanning the latter. Secondly, the deformation does not depend on the entire deviatoric

stress, but rather on only the part S" lying in a four-dimensional deviatoric subspace.

Given these facts, it is clear that the convexity (implying D/S invertibility) and shear

rate uniqueness properties (HILL, 1956) usually associated with power law viscoplas-

tic single crystal slip models (e.g., HUTCHINSON, 1976) fail to hold. However, local

convexity connecting the respective four-dimensional subspaces, implying D/S" invert-

ibility, does obtain. We will now use these properties and observations regarding the

constrained single crystal model in formulating a polycrystalline model of deformation.
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3. POLYCRYSTALLINE AGGREGATE

5.1 Kinematics

Consider an aggregate of crystals of the type described in the previous section which

occupy the domain fl of volume Vn. We imagine that for points x on the boundary

all, the velocity v is prescribed according to

v =Lx = (ID+ W) X. (12)

Here L is a constant macroscopic "velocity gradient" tensor with symmetric part

F = (L + Ti) and skew part W = (L + LT). Ir, compressibility dictates that

trL =trD = O.

Within an individual crystal, let the axis of inextensibility be parallel to the unit

vector c. The local deformation rate D within such a crystal must satisfy the constraints

(3,4).

Following the insight of TAYLOR, we would like to choose a local D which, while

satisfying (3,4), is nonetheless "close" to the macroscopically imposed D. A minimal

requirement of global compatibility within the aggregate (e.g., HILL, 1972) is that the

volume average deformation rate, given by

< f oDdV' (13)
<D>- Vn

equals D:

<D> = . (14)
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In order to choose local values of D which satisfy (3,14), let us first introduce the

"intermediate" traceless deformation rate Db, given by

Db =K [D]I1 (15)

where K is a constant fourth order tensor (to be specified below) mapping T2 into itself.

We propose to express D as

D = D- dC', (16)

where d is a constant which can be evaluated by enforcing (3):

0 =D.C' b • C' - dC' • C', (17)

so that
D.C' 3I

d = = - -*C'. (18)
C'-C' 2

On combining (16) with (18), we obtain

D = (i,( )
2

I-3 C1 C

- p[~.(9

Here I is the fourth order identity tensor and P is the local fourth order "projec-

tion" tensor mapping T2 into T2 . The geometric interpretation of (16-19) is shown

schematically in Fig. 1.

We note in passing that D, as de'ned by (19), is the unique element of TLc closest

to b (min I - DI). For those crystals having b. C' = 0, D = D, analogous to the

TAYLOR assumption in unconstrained crystals.
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Now, by inserting (19) into the global average compatibility condition (14), and

recalling that f) is constant, we obtain

< P 1 > < P>(ID (20)

A comparison of (20) with (15) indicates that

K =< P ,(21)

so that local deformation is

D =IP < P>-,I[f)] (22)

We complete the description of local kinematics by choosing the local spin W. As

in TAYLOR models which take no account of morphological grain texture, we simply

equate local spin with the global average spin:

W - 1, (23)

trivially satisfying < W > - W. The rate of change of lattice orientation is given by

a spin tensor W - W P which provides the following evolution equations (ASARO and

RiICE, 1977) for R* and for A*, the latter of which is the skew part of the slip system

dyadic:

= (W - WP)Ra - R0 (W - WP), (24)

A0 = (W - WP)A * - Aa(W - WP), (25)

where the plastic spin, W P, within a crystal is given by
N 1WP -- al I a0 s(X 00

0= 2
N

A .  (26)
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We note in passing that the tensor C', being connected to the crystal lattice, also

evolves with this spin:

6'= (W - W,)C' - C'(W - WP). (27)

3.2 Stress and Equilibrium

The macroscopic stress deviator S must also be the volume average of the local

stress deviators:

<S>=S. (28)

On inserting the decomposition for S given by (8) into (28), we obtain

<so >+ 3 .' = S. (29)
2

The local stresses S* are determined in terms of 1D by inserting (22) into (11) and

then inverting the latter equation. However, the local deviatoric stress component

Sc = 1 S. C' is a reaction enforcing the inextensibility constraint and can be determined

only from equilibrium considerations. We approximate this local stress component as

the corresponding projection (component) of the macroscopic stress, S:

3 CI3-C
Sc = S - * C'. (30)

2 2

When (30) is inserted into (29), and the equation is rearranged (bearing in mind that

S is constant), there obtains

< I 3 <C, oC, 1}s<s>= {I- < ®c > [s1

- < P >[. (31)

Equation (31) provides the connection between global deformation rate and stress

deviator. As has been emphasized by others (e.g., ASARO, 1983a,b), the simulation of
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deformation and texture evolution in general should not proceed by prescribing a priori

all components of b. Rather, specific components of f) and of S must be given in a

manner consistent with a well posed boundary value problem. For example, in simple

compression, one might prescribe DU = k $ 0 and require ,31 = S32 = S1 - .922 =

.312 = 0. In any event, the five prescribed macroscopic components, in conjunction

with the five relations (31), provide the means for determining all stress deviators and

deformation rates, both locally and in global average.

8.9 Tensorial Representation of Tezture

In our constrained hybrid model, the macroscopic texture tensor < P > plays a

prominent role in defining both the local kinematics and global equilibrium. This

tensor can be explicitly evaluated by replacing the volume integral in its definition

by a weighted integration over orientations defined on the unit sphere, S. ONAT and

LECKIE (1988) have recently given a convenient tensorial representation for a scalar

field on S. Here we adapt those results for the polycrystalline aggregate.

Let an ensemble of N. grains of equal volume constituting a material point have

c-axis unit vectors (±c1 , -c2, ... , ±cN,), where we note that the ± sign is necessary

since the symmetry of an axis emphasizes that no unique sign can be assigned to ci.

The endpoints of this set of unit vectors pierce S at 2N, locations. We describe the

cloud of points on S by an axis orientation density function, vc (n). Consider a given

point, n, on S and surround it with an infinitesimal area dA. Let dN. be the number

of grains with c-axis projecting into dA; the point density dN./dA is normalized to

obtain 'c (n):

27r dN. (32)
1N dA

14



ONAT and LECKIE (1988) have shown that functions vc of this sort can be repre-

sented in the form

vc (n) = 1 + OfjFji(n) + Cijui(n) + (33)

where

c'i: cartesian components of a traceless, symmetric
second order tensor ( C:, = e-'ei)

Ciikl: cartesian components of a fourth order
completely symmetric, completely traceless tensor,
etc.,

and the even Fourier "basis" terms are modified spherical functions having cartesian

components

Fj (n) - ni nj - 1 bij (34)

~nininkni

J (n j -( (,inkn, + 4 knin + 6,nn, + btnik + 63knit + b5i"tLk) (35)

Sx7-ij bkJ + bikbi1 + bi1 6 ,h)

etc.

Here 6bj is the Kronecker delta, and n are cartesian components of the unit vector

n relative to the orthonormal basis e,. In direct tensor notation, for example, F(n)

n n - 1.

The basis tensors F, .7, ... generate their corresponding Fourier coefficients through

15



1 ---- -- --

L/c (n):

1 I vc(n) x IdA, (36)

= x 3 5 vc(n) x Fij(n)dA, (37)
4v 2 is

- X3x5x7x vc(n) x 3rij(n)dA, (38)
4w" 2x3x4 s

etc.

The Fourier coefficients C,'., Cjj, ... can be thought of as "moments" of the axis orien-

tation distribution function, vc (n). ONAT and LECKIE emphasize that the tensor char-

acter of the Fourier coefficients is such that, under orthogonal transformations Q, they

transform via standard tensor transformations of appropriate order, e.g., C' -+ QCIQT,

etc. For isotropic distributions of the c-axis, vc(n) = 1, and all other texture tensors

(C', C, etc.) vanish.

We can use the Fourier tensors to calculate those ensemble-average tensor functions

of the texture which depend only on the local c-axis orientation by evaluating the

integral over S of the function, weighted by tc(n); i.e.,

< t (C) > ---- I f 'c(n) T(n) dA (9

for any tensor-valued function t(c). In the particular case of the projection tensor P,

P(c) = C cc- (C ® C

1 3 F(c) @ F(c). (40)
2

We can define the average value, < P >, by its action on an arbitrary G E T2. On

16



using (33-40), the result can be expressed as

4 G
5

< P > [G] + 3x4 G) I {-2 'G + e'(1

34 C [G]
5x7x9

precisely, independent of any higher Fourier moment of texture. For isotropic distribu-

tion of the c-axis, &' = C = 0. In such cases, for example, from (15), (21), and (41),

<P> [ >]= 4i so that ) = E.

The tensor mapping on the unit sphere presumes a smoothed, infinite dimensional

basis for the axis orientation distribution, whereas the motivation (and, indeed, nu-

merical simulations of polycrystals) are based on a finite number of grains. Rational,

effective means for obtaining the smoothed texture tensors C', C, etc., from finite pop-

ulations have been developed based on invariant tesselation and quadrature on the

manifold S, PARKS (1989).

5.4 Generalization to Two or More Corstrainta

The method outlined in sections 3.1 and 3.2 is applicable to polycrystalline models

of crystals having a single kinematic deficiency in deviatoric response. We briefly gen-

eralize the formulation to accommodate crystals having two linearly independent con-

straints on deviatoric deformation; further generalization to three or more constraints

is transparent. The extended model forms the basis for simulations of deformation and

texture evolution in polycrystalline olivine reported in section 4.3, below.

Suppose that deformation in a crystal satisfies the condition D • B' = 0 in addition

17



to (3), where the deviatoric tensor B' is orthogonal to C': B'- C' = 0. We again

introduce the intermediate tensor b using (15), but generalize (16) to

D = D-dC'-bB'. (42)

Enforcement of the two constraints provides b = (f - B')/(B' • B') as well as the

result (18) for d. The generalization of (19) is

D =R[D, (43)

where
1

(B'. B') B' 0 B'. (44)

Satisfaction of (14) now requires < R >-'= K.

The invariant decomposition of stress deviator analogous to (8) is

S = S'"+ScC'+SeB'

= s (S. C') C'+ (S B') B' (45)
S+ (C'.c') +(B'.B')

where the kinematically-determinable S" lies in a three-dimensional subspace of T,

and SC and S9 are the deviatoric stress reactions which must be determined from

equilibrium. Finally, the approximations S • C' - S C' and S - B' - S B furnish,

through (28), the generalized global equilibrium relation

< R > [=< S* >. (46)

18



4. APPLICATIONS

4.1 Numerical calculations

Because of the incompressibility, the strain rate is vectorized to five independent

components referred to a fixed cartesian basis:

D -~ D5 {=(D22 - Dll)/v'2-, 1/2D33 , D2 /Vi2, Dis/V2-. D/2V'2}

All other deviatoric tensors are also vectorized in the above convention.

The solution procedure is as follows. Once an estimate of fD is known, the local

stretching D is calculated from (22), since both local orientation and global texture are

assumed to be known instantaneously. The non-linear relation (11) between D and the

reduced stress S" is solved by the Newton-Raphson method to obtain S*. The global

average < S" > is then obtained, and (31) is solved to obtain S. If global stress bound-

ary conditions are satisfied to sufficient tolerance, the solution is accepted; otherwise,

Newton-Raphson corrections to the work-conjugate components of 1D are made, and

the procedure is repeated. Once global conditions are met, the remaining portion of S is

obtained from assumption (30) when it is required. Local updating of lattice orientation

proceeds by constructing an orthogonal tensor QL = exp {At (W - WP) }, where At is

a small time increment, and the spin tensors are obtained from (23) and (26). Lattice

tensors (e.g., R-2, A', C') are then updated according to C'(t + At) = QLCI(t)QLT,

etc. In the updated configuration, the procedure is repeated for the next increment.

Typically, global deformation increments of one percent are used. Similar procedures

are used for the case of two constraints.
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Initial isotropic distributions of lattice orientation are constructed using random

numbers. A check on the isotropy of the initial texture was obtained from (41); typically

the numerical value of < P > deviated from 1 1 by less than two percent.

4.2 Application to Hezagonala

The slip systems reported to be activated in different hexagonal crystals (GRovEs

and KELLY, 1963) are of two types - slip systems with a as Burger's vector: basal

slip {0001} < 2110 >, prismatic slip {01i0} < 2110 >, and pyramidal slip {01il}

< 2110 >; and slip systems with (a + c) as Burger's vector. TOM9 and KocKs (1985)

analyzed single crystal plasticity of hexagonals yielded by different types of slip and

twinning systems.

Since the Burger's vector a of basal and prismatic systems lies in the basal plane,

these two sets of systems together comprise only four linearly independent slip systems.

For the same reason, the addition of the pyramidal slip {01i1} <2 110 > does not sup-

ply the missing degree of freedom (i.e., no plastic deformation along the c-axis). The

additional mechanisms which can supply the missing degree of freedom are pyramidal

slip with Burger's vector < a + c > or certain twinning systems, TOMt and KOCKS

(1985).

HUTCHINSON (1977) applied self-consistent and upper bound models to hexagonal

polycrystals with isotropic texture and with an ideal lattice ratio c/a = 2 (2/3) to

predict the uniaxial reference stress &0 in the following uniaxial power law creep equa-

tion:
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D e9 = io (ereq / do ) " ,  (47)

or, equivalently,

&o = &eq (D 'e / i o ) - 1/ n,  (48)

where Dq f' D. i and - S are the macroscopic equivalent uniaxial ten-

sile strain rate and equivalent tensile stress, respectively, %0 is the reference shear rate

of the single crystal, and n = 1/m, where m is the rate sensitivity exponent. HUTCHIN-

SON considered basal and prismatic, as well as pyramidal slip 11122} < 1123 >. T-,

compared self-consistent and upper bound (TAYLOR) results for different rate sensit

ities and differing ratios of critical resolved shear stresses on different systems. When

the critical resolved shear stress on the pyramidal system is infinite (i.e., pyramidal

slip is omitted), the upper bound calculation fails because of the inextensibility con-

straint in the c direction. However, in this case he was able to obtain results from the

self-consistent model.

Here we compare results from the CH model with HUTCHINSON'S in the case of

four independent systems only (basal and prismatic systems). Direct comparisons

are made for exponents n = 1 and n = 3 and for the critical resolved shear stress

ratio T"/r = 10, where r and rp are critical resolved stresses for basal and prismatic

systems, respectively. The polycrystalline aggregate consists of 248 randomly oriented

single crystals, resulting in an isotropic texture.

Results of the tensile reference stress do, normalized by rp, are given in Table 1,

as are HUTCHINSON'S results. In the linear (n = 1) case, the model prediction falls

between the self-consistent and Hashin-Shtrikman lower bound, approximately 78% of
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the self-consistent value. For n = 3, the self-consistent estimate more than doubles,

compared to the n = 1 case, while the CH estimate increases modestly by only ten

percent above its n = 1 value. HUTCHINSON (1977) noted that there are reasons to

suspect that the self-consistent model overestimates 6 o when pyramidal slip is absent,

so the current results may be more accurate.

Figure 2 shows the variation of the normalized reference stress versus the slip system

hardness ratio r6/rp for n = 1 and n = 3 as predicted by the present model. Results

for n > 3 differ only slightly from those of n = 3. We note that the value of n = 3

and "hard" prismatic systems (small rb/rp) corresponds to ice crystals (HUTCHINSON,

1977; WEERTMAN, 1973; ASHBY and DUVAL, 1985).

4.9 Application to Olivine

Olivine is a crystalline mineral which is believed to be the major constituent of

the upper mantle. Strong seismic anisotropy has been observed in the upper mantle

beneath both oceanic and continental crust. At high pressures, where microcracks

are closed, it is possible that seismic anisotropy could be due to preferred crystalline

orientation, or texture. Recently TAKESHITA, et al., (1989) have begun to model the

development of polycrystalline deformation texture in olivine.

Olivine has an orthorhombic crystal lattice. Several experiments have been carried

out to determine operative slip systems at different temperatures (CARTER and Avg

LALLEMANT, 1970; DURHAM and GOETZ, 1977; RALEIGH, 1968). TAKESHITA, et al.,

(1989) summarize the slip systems into two classes; class A for low temperature, and

class B for higher temperature, and estimate the resistances for these systems. They
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note that the class B systems and resistances are based on single crystal experiments,

while the class A systems should be viewed as more tentative. These systems are

summarized in Table 2. Both classes have only three independent slip systems, allowing

no inelastic stretching along (unit) crystallographic directions a, b, and c (i.e.., normal

strain components referred to crystallographic axes cannot be accommodated by slip).

In order to use the TAYLOR formalism, TAKESHITA, et al., proposed that the normal

strains (strains in crystallographic directions) are accommodated by dislocation climb

while shear strains (as referred to crystallographic axes) are accommodated by slip.'

The neglected normal strain components were presumed to make no contribution to

textural evolution. They also used the self-consistent model of MOLINARI, et al.,

(1987) to predict texture of olivine deformed by simple shear and compared results to

the TAYLOR model predictions. For neither model was the predicted polycrystalline

stress strain response reported.

Here we use the nonhardening CH model to predict the behavior of olivine and

compare our results to those of TAKESHITA, et al. Since there are only three indepen-

dent slip systems for either of the two classes of slip systems, we use the two-constraint

version of the model outlined in section 3.4. The normal stretching components are

zero along the crystallographic axes: a • Da = b • Db = c • Dc = 0. Because of as-

sumed incompressibility, the three normal strain constraints are reduced to only two

independent deviatoric constraints, which c~n be expressed as

D. B' = 0, (49)

1Procedures locally requiring certain deformation components to equal the corresponding macroscopic
average components, while simply ign, -ing (in a mechanics sense) the other components, have collectively
come to be termed "relaxed constrai. models.
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D C'=0, (50)

where B' = (b ® b - a @ a) and C' is given by (3).

We considered the olivine behavior and development of anisotropy under conditions

of both simple shearing and plane strain compression at high temperature (class B).

The initial texture, consisting of 248 randomly oriented single crystals, is isotropic and

is represented by pole figures in f:g. 3. We chose a value of n = 5 as did TAKESHITA,

et al., (1989). The predicted stress strain curves are given in Fig. 4 for both plane

strain compression and simple shear. The macroscopic equivalent tensile stress, aeq,

is normalized by r0 , the initial resistance of the easiest slip system. The macroscopic

equivalent strain is defined as F" = f f'q dt.

The texture developed under simple shear is shown in Fig. 5, where the sense of

shear is indicated by the arrows. This texture is in agreement with those obtained

by TAKESHITA, et al., and with a texture which has been observed in naturally de-

formed olivine (MERCIER, 1985). Texture developed during plane strain compression,

Fig. 6, as predicted by the present model, is also in agreement with the predictions of

TAKESHITA, et al. Unfortunately for purposes of comparison, at present there seems to

be no available experiments on polycrystalline olivine documenting texture evolution

from an initially isotropic texture under simple shear or plane strain compression.

4.4 Application to HDPE

High density polyethylene (HDPE) is a semi-crystalline polymer with crystallinity

typically between 70% and 80%. In order to apply the present model in a highly

idealized manner to HDPE, we neglect the contribution of the amorphous phase by

24



assuming an "ideally crystalline" polyethylene (100% crystallinity). We further neglect

the important morphological texture of the material, which, in the macroscopically

isotropic case, usually consists of spherulitic regions containing crystalline lamellae and

amorphous interlamellar domains of highly correlated local orientation, but of random

orientaion when averaged over the spherulite.

Plastic deformation of single crystal (lamella) HDPE was reviewed by BOWDEN and

YOUNG (1974) and by HAUDIN (1982). The crystalline domains (lamellae) form an

orthorhombic lattice with the c axis in the polymer chain direction. The crystals can

deform by slip, twinning or martensitic transformation. In this application we consider

only plasticity by slip. The possible slip systems are chain slip (axis c is Burger's vector)

and transverse slip (Burger's vector perpendicular to c axis). Table 3 summarizes

all possible slip systems, along with corresponding estimated normalized deformation

rtsistances. Together, these provide only four independent slip systems, allowing no

plastic extension in the c direction (chain direction). The possible twinning modes,

which are not included in our calculations, do not provide an additional independent

system.

We used the CH model with one constraint to predict the behavior and texture

evolution of an ideally 100% crystalline HDPE under both tension and simple shear.

The initial texture, again consisting of 248 randomly oriented single crystal orientaions,

is isotropic, as indicated by the pole figure shown in Fig. 3. The value of n is taken as

17, which corresponds approximately to the strain rate sensitivity exponent m = 0.06

obtained experimentally at room temperature by G'SELL and JONAS (1979) in tests

of spherulitic HDPE. In view of the small lamellar thicknesses (-- 20nm), it was felt

that strain hardening by dislocation interaction within the lamellae was likely to be
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insignificant, so no hardening of slip system critical resolved shear stress was included.

Equivalent stress strain curves for simple shear and for tension are given in Fig. 7.

Stress is normalized by the critical resolved shear stress for chain slip. Evidently,

textural hardening of HDPE is very important in tension but not in simple shear. This

result is in excellent agreement with the experimental results of G'SELL, et at., (1982).

The texture developed during tension is a fiber texture, Fig. 8, with chain direction

(c-axis) parallel to the tension direction. Clearly, this distribution of the inextensible

chain directions is responsible for the dramatic upturn in the tensile stress strain curve

of Fig. 7.

The texture developed by simple shear is shown in Fig. 9, where it is noted that

a reversed sense of shear (as compared to that used for olivine in Fig. 5) has been

adopted. In Fig. 9a, at a shear of -y = 2.16, a sharp c-axis texture component forms

along the material fiber of maximum stretch, and the two other crystallographic axes are

almost randomly oriented around c (fiber texture). Figure 9b, at a shear of -1 = 2.6,

shows further sharpening of the c-axis texture in a direction closer to the shearing

direction. The fact that the c-axis rotates toward the direction of maximum stretch,

which itself is tending toward the shearing direction with ongoing shear, allows most

of the deformation to be accomodated by chain slip (easy slip). This explains why

the textural hardening is very weak in simple shear. On the contrary, when the HDPE

becomes textured under tension, it exhausts available deformation mechanisms and the

requisite driving stress tends to infinity.

Results from more sophisticated composite inclusion models (AHZI, PARKS and

26



ARGON, 1989; PARKS and A izI, 1989), in which we accounted for effects of the inter-lamellar arrorphous phase in IIDPE, showed qualitatively si nilar stress strain behaviorand texture evolution. In the latter models, however, equivalent sharpness textureswere obtained at consistently higher strains than in the current calculations. This indi-cates that a primary role of the amorphous material in HDPE is to provide additionalstraining without substantial effect on crystallographic texture.
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5. DISCUSSION

We have clearly identified the special constitutive features of rigid-viscoplastic single

crystals which do not possess five independent slip systems. In addition to the rela-

tively well-known kinematic constraint, there is a corresponding indeterminacy in the

deviatoric stress. Based on these observations, we have constructed a simple TAYLOR-

type polycrystalline model which accounts for the local kinematic constraints, as well

as providing a means for dealing with the "kinematically indeterminant" part of the

local stress deviator. As examples of the broad applicability of the model, we applied

it to various problems of polycrystalline deformation and texturing in kinematically

deficient crystals of hexagonal and orthorhombic symmetry. These examples were in-

tended simply to demonstrate the new model, rather than as comprehensive, or even

complete, studies of particular problem areas. Further applications of the model are

underway, and will be reported.

A primary reason for the success of the model is that, like the self-consistent formu-

lations, it imposes far less stringent kinematic conditions on individual inclusions than

uniform deformation. As in the self-consistent models, global compatibility (in the

form of macroscopic deformation equalling the volume average of local deformation) is

preserved, but local compatibility is not addressed. While such "disregard" for local

compatibility may seem to be a limitation of these approximate models, a rigorous

study would require higher order statistical information regarding the microstructure,

as well as recognizing the inhomogeneity of plastic deformation within grains (ASARO,

1983a,b).

In preserving the volume-average character of deformation, a macroscopic projec-
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tion tensor, < P >, played a promzient role. We presumed that this diagonally sym-

metric fourth order tensor was invertible; i.e., that it mapped T2' to itself. In certain

extreme (Dirac-like) textures, such as the fiber textures displayed in Figs. 8 and 9,

< R > itself becomes degenerate, spanning only Tl.c. The simple shear calculations

could be continued without substantial difficulty, but tensile deformation was extin-

guished. In any event, the numerical condition of < P > can become an issue at sharp

texture.

The tensor < P > also played an important role in enforcing the volume average

condition on the stress deviator. This occurred because the local constraint stress was

approximated by the corresponding component of the macroscopic stress. We are not

aware of rigorous justifications for making this assumption. Rather, we sought simply

to provide for some measure of equilibrium between the constrained inclusion and its

macroscopic surroundings. Perhaps a related (though less sophisticated) assumption

might attempt to account for pressure sensitivity of rigid-viscoplastic polycrystalline

slip by assuming local pressure within an inclusion to equal the global average pressure,

which in turn could be deduced from traction boundary conditions.

We generalized the formulation to account for two (or more) deviatoric constraints

within grains (three or fewer independent systems), and applied it to deformation

texturing in the mineral olivine. Formally, the methodology could be extended to a

single slip system within each grain, but we reserve judgment on its utility in that

limit. For example, in the hexagonal reference stress study, we found indications of

a non-zero limit for a0/rp as Tb/rp approached zero, Fig. 2. On the other hand, one

could argue that in this limit, prismatic slip would be "infinitely" more difficult than

basal slip, so that only the two independent basal systems should be retained (three
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constraints). In that event, ao would scale with the retained rb.
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(rbIr, = 1/10) lo/rp (n= 1) aoI (n =3)

Taylor Model c0 o
H.-S. Upper Bound 00 c
Self-Consistent 1.75 3.9
H.-S. Lower Bound 0.74
Sachs Model 0.45
CH Model 1.37 1.49

Table 1: Macroscopic tensile stress reference values, normalized by rp,

in an isotropic polycrystal of hexagonal single crystals without

pyramidal slip. Comparison of CH predictions to results of

HUTCHINSON (1977) for the case rb/r, = 1/10.

slip system normalized resistance

class A {110}001] 1.
(010)[1001 1.

class B (001)[100] 1.3
(010)(0011 2.7

Table 2: Slip systems of olivine and their corresponding

normalized initial critical resolved shear stresses.

A: Low temperature; B: High temperature

(after TAKESHITA, et al., 1989).
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____________ jslip system normalized resistance

(100)[001] 1
Chain slip (010) [0011 1

_____________ {110}[001] 1
(100)[010] 1.1

Transverse slip (010)[100] 1.4
___________ {110} < 110 > 1.8

Table 3: Slip systems of polyethylene and estimates of their corresponding

normalized initial critical resolved shear stresses.
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Figure 1: Schematic representation of

local strain rate in reduced space.
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Figure 2: Macroscopic reference stress for isotropic

HCP polycrystals having only basal and prismatic slip.
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Figure 4: Macroscopic equivalent stress-strain

curves for olivine.
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(fiber texture) for tension of 100% crystalline HDPE.

9-q=l. (axis 3 = tension direction).
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Figure 9-a: Predicted (002) and (200) pole figures

for simple shear of 100% crystalline HDPE. (y=2.16).
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